
KittenSwap : Navigating the Design Space of DEX

Sep 16, 2020 [WORKING DRAFT]

KittenSwap is a hybrid AMM+Book DEX (www.kittenswap.org) currently in active

development. The name might be a meme, however KittenSwap is a serious project.

In this draft I will review typical AMM designs and challenges, and describe how

KittenSwap chooses to solve the problem.

This is not a whitepaper, and it’s more like a tech-report, because tech is essential for a

competitive DEX and for building an interesting MVP.

In this new version I reveal more of my formulas. Some details are still deliberately left

out in this draft, to prevent potential immediate copycats.

1 The Uniswap model, and my view

I will begin with a review of Uniswap. Conside the token pair A/B.

Let {qA, qB} be the current amount of A and B tokens in the contract, and qLP be the

total supply of LP shares.

There are three kinds of common events:

1. LP-DEPOSIT : the LP is swapping A+ B for LP shares.

2. LP-WITHDRAW : the LP is swapping LP shares for A+ B.

3. TRADER-SWAP : the trader is swapping between A and B.

and I would take a new unified view: all three events are swapping tokens, therefore they

can be processed by one single KittenSwap(· · ·) function under a unified model. More on

that in later sections.

Some formulas. For LP-DEPOSIT based on B, we have:

δA = δB · qA/qB + ε

δLP = δB · qLP/qB

For LP-WITHDRAW, we have:

δA = δLP · qA/qLP

δB = δLP · qB/qLP

www.kittenswap.org

KittenSwap : Navigating the Design Space of DEX

For TRADER-SWAP from B to A, we have:

Q(qA, qB) = qA · qB = (qA−δA)(qB +λδB) =Q(q′A, q′B)

=⇒ δA =
λδB · qA

qB +λδB
or δB =

δA · qB

λqA−λδA

Notice Uniswap applies λ = 0.997 for the incoming token B. I believe it’s better to

apply λ for the outgoing token A instead. Because if A is in demand, leaving some A

instead of B in the pool is better for LPs. Let me know your ideas on this.

Here is the relevant code in the UniswapV2Router02 contract:

function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) internal

pure returns (uint amountOut) {

...

uint amountInWithFee = amountIn.mul(997);

uint numerator = amountInWithFee.mul(reserveOut);

uint denominator = reserveIn.mul(1000).add(amountInWithFee);

amountOut = numerator / denominator;

}

The marginal price p = pA/B is:

pA/B =
∂ δB

∂ δA

����
δA=0

=
qB

λqA

as expected.

Uniswap is a special case of CFMMs. The constant function Q is a weighted geometric

mean in Balancer, and a mixture of sum and product in Curve.

2 KittenSwap : the dynamic AMM pool

One of the drawbacks of Uniswap is the LP has a fixed 50-50 exposure to both tokens.

The situation is improved in Balancer, however the token weights are still fixed at pool

creation.

KittenSwap proposes a new solution, where the LP is free to deposit either of the pair

tokens, and there is no swap-at-deposit loss as in the case of Balancer.

That is, in Balancer when you deposit A into an A/B pool, you are forced to swap part

of A into B, taking a loss. KittenSwap solves this.

2

KittenSwap : Navigating the Design Space of DEX

The KittenSwap solution is to introduce a dynamic weight w, and changing it at each

LP-DEPOSIT and LP-WITHDRAW event. This is best explained using a table of events.

KittenSwap qA qB w pA/B remark

initial pool 10 1 1 0.1 1/10 · 1= 0.1

deposit 10 A 20 1 2 0.1 1/20 · 2= 0.1

purchase 5 A 15 1.778 2 0.237 202 · 1≈ 152 · 1.778, 1.778/15 · 2≈ 0.237

withdraw 5 A 10 1.778 1.333 0.237 1.778/10 · 1.333≈ 0.237

deposit 5 A 15 1.778 2 0.237 1.778/20 · 2≈ 0.237

sell 5 A 20 1 2 0.1 152 · 1.778≈ 202 · 1, 1/20 · 2= 0.1

And the perfect circle is completed.

When LPs deposit and withdraw, the pA/B does not change, hence LPs have 0 loss in

the process, and only the w changes dynamically.

Careful readers will notice some hidden problems and corner cases, moreover there can

be further improvements. Here we will deliberately conceal our full solution, as mentioned

before.

Basically, a KittenSwap pool has two kinds of shares LPA and LPB (instead of one

single share as in Uniswap). The LP gets LPA shares for depositing A, and LPB shares for

depositing B, and the prices of LPA and LPB shares are dynamically adjusted after each

TRADER-SWAP event.

The formulas for adjusting share prices are not obvious. Here I show my first-order

closed-form formulas to demonstrate the depth of the problem.

Let the initial pool state Ω = {qA, qB, w}, and let the initial prices of pool shares be

1 [LPA] = 1[A], 1 [LPB] = 1 [B].

If a trader purchases δA amount of A token from the pool, then the price of LPA becomes

1 [LPA] = a [A] + b [B], where the formula for a is :

a =
(qA−δA) (w log(qA

qA−δA
) + 1+w)

qA (1+w)

and the formula for b is :

b =
wqA

w−1qB log(qA
qA−δA

)

(1+w)(qA−δA)w

and it is a fun exercise deriving these formulas. If you understand them, you are welcome

to join our discord : https://discord.gg/pMaZswC.

3

https://discord.gg/pMaZswC

KittenSwap : Navigating the Design Space of DEX

For instance, if Ω= {qA = 2, qB = 1, w= 1} and δA = 1 then:

1 [LPA] =
2+ log(2)

4
[A] +

log(2)
2
[B]≈ 0.673 [A] + 0.347 [B]

1 [LPB] =
− log(2)

2
[A] + (2− log(2)) [B]≈ −0.347 [A] + 1.307 [B]

and as a sanity check, we have:

2 [LPA] + 1 [LPB] = 1 [A] + 2 [B]

because {q′A = 1, q′B = 2} after the trade, and the value of outstanding pool shares (2 [LPA]+

1 [LPB]) must equal the value of the pool (1 [A] + 2 [B]).

And because δA = 1 is an extreme movement for {qA = 2, qB = 1}, we see significant

changes in the LPA and LPB share prices. One curious effect is, some of the coefficients

may become negative. This is not a problem, because:

(1) If the LP deposited more balanced assets such as 0.1 [A] + 0.1 [B] (which is still

different from the 2 : 1 asset ratio of the pool and hence impossible to achieve in UniSwap

or Balancer pools), we have 0.1 [LPA] + 0.1 [LPB] ≈ 0.0327 [A] + 0.165 [B] and everything

is positive.

(2) Even if we see a negative amount, it can be settled using a virtual trade at withdraw.

3 On the impermanent loss problem

The impermanent loss problem is usually claimed to be solved using an external oracle,

which in fact brings in other problems.

KittenSwap plans to avoid an external oracle. KittenSwap will be an oracle itself,

and capable of providing price feeds to other cryptoprojects.

This requires sophisticated designs because this is known to be difficult problem in-

volving game theory between miners and arbitrageurs and traders and LPs. More on that

later.

4

	The Uniswap model, and my view
	KittenSwap : the dynamic AMM pool
	On the impermanent loss problem

